PLTW Launch Standards Connection

Earth's Water and Interconnected Systems

Connections to Standards in PLTW Launch

PLTW curriculum is designed to empower students to thrive in an evolving world. As a part of the design process when developing and updating our curriculum, we focus on connections to a variety of standards. This PLTW Launch module connects to standards in the following:

Next Generation Science Standards	Page	2
Computer Science Teachers Association K-12 Computer Science Standards	Page	6
Common Core State Standards English Language Arts - Fifth Grade	Page	7
Common Core State Standards Mathematics - Fifth Grade	Page	9

Motion and Stability: Forces and Interactions

5-PS2-1

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Earth's Systems

5-ESS2-1

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

5-ESS2-2

Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Earth and Human Activity

5-ESS3-1

Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

Engineering Design

3-5-ETS1-1

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science and Engineering Practices: Asking Questions and Defining Problems

Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships.

Science and Engineering Practices: Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

• Develop a model using an analogy, example, or abstract representation to describe a scientific principle or design solution.

Science and Engineering Practices: Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

Science and Engineering Practices: Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

Science and Engineering Practices: Using Mathematics and Computational Thinking

Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.

• Describe, measure, estimate, and/or graph quantities (e.g., area, volume, weight, time) to address scientific and engineering questions and problems.

Science and Engineering Practices: Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

Science and Engineering Practices: Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

• Construct and/or support an argument with evidence, data, and/or a model.

Science and Engineering Practices: Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

Disciplinary Core Ideas (3-5)

Physical Science

PS2.B Types of Interactions

• The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center.

Earth and Space Science

ESS2.A Earth Materials and Systems

• Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth's surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.

ESS2.C The Roles of Water in Earth's Surface Processes

• Nearly all of Earth's available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.

Engineering, Technology, and Applications of Science

ETS1.A Defining and Delimiting Engineering Problems

• Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.

ETS1.B Developing Possible Solutions

• Research on a problem should be carried out before beginning to design a solution.

ETS1.B Developing Possible Solutions

• At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.

ETS1.B Developing Possible Solutions

• Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

ETS1.C Optimizing the Design Solution

• Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.

Crosscutting Concepts (3-5)

Cause and Effect: Mechanism and Prediction – Events have causes, sometimes simple, sometimes multifaceted. Deciphering causal relationships, and the mechanisms by which they are mediated, is a major activity of science and engineering.

• Cause and effect relationships are routinely identified, tested, and used to explain change.

Scale, Proportion, and Quantity – In considering phenomena, it is critical to recognize what is relevant at different size, time, and energy scales, and to recognize proportional relationships between different quantities as scales change.

• Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.

Systems and System Models – A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems.

• A system can be described in terms of its components and their interactions.

Computer Science Teachers Association K-12 Computer Science

In Spring 2023 PLTW submitted all necessary documentation required by the Computer Science Teachers Association (CSTA) for a crosswalk review of our Launch and Gateway curricula by the CSTA Standards Review Team. While we anticipate approval and validation by CSTA, the review is pending.

Computing Systems

Troubleshooting

1B-CS-03

Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.

Networks and the Internet

Cybersecurity

1B-NI-05

Discuss real-world cybersecurity problems and how personal information can be protected.

Data and Analysis

Collection Visualization & Transformation

1B-DA-06

Organize and present collected data visually to highlight relationships and support a claim.

Inference & Models

1B-DA-07

Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.

Reading Informational Text Standards

Key Ideas and Details

CCSS.ELA-LITERACY.RI.5.3

Explain the relationships or interactions between two or more individuals, events, ideas, or concepts in a historical, scientific, or technical text based on specific information in the text.

Craft and Structure

CCSS.ELA-LITERACY.RI.5.4

Determine the meaning of general academic and domain-specific words and phrases in a text relevant to a grade 5 topic or subject area.

Integration of Knowledge and Ideas

CCSS.ELA-LITERACY.RI.5.7

Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently.

CCSS.ELA-LITERACY.RI.5.9

Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably.

Writing Standards

Research to Build and Present Knowledge

CCSS.ELA-LITERACY.W.5.8

Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources.

CCSS.ELA-LITERACY.W.5.9

Draw evidence from literary or informational texts to support analysis, reflection, and research.

Speaking and Listening Standards

Comprehension and Collaboration

CCSS.ELA-LITERACY.SL.5.1

Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 5 topics and texts, building on others' ideas and expressing their own clearly.

CCSS.ELA-LITERACY.SL.5.2

Summarize a written text read aloud or information presented in diverse media and formats, including visually, quantitatively, and orally.

Common Core State Standards English Language Arts - Fifth Grade

CCSS.ELA-LITERACY.SL.5.4

Report on a topic or text or present an opinion, sequencing ideas logically and using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace.

CCSS.ELA-LITERACY.SL.5.5

Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

Common Core State Standards Mathematics - Fifth Grade

Number and Operations in Base Ten

Perform operations with multi-digit whole numbers and with decimals to hundredths.

CCSS.MATH.CONTENT.5.NBT.B.5

Fluently multiply multi-digit whole numbers using the standard algorithm.

Mathematical Practices

CCSS.MATH.PRACTICE.MP1

Make sense of problems and persevere in solving them.

CCSS.MATH.PRACTICE.MP2

Reason abstractly and quantitatively.

CCSS.MATH.PRACTICE.MP3

Construct viable arguments and critique the reasoning of others.

CCSS.MATH.PRACTICE.MP4

Model with mathematics.

CCSS.MATH.PRACTICE.MP5

Use appropriate tools strategically.

CCSS.MATH.PRACTICE.MP6

Attend to precision.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

Common Core State Standards Mathematics - Fifth Grade

Included in Optional Extensions

Operations and Algebraic Thinking

Write and interpret numerical expressions.

CCSS.MATH.CONTENT.5.OA.A.1

Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

Number and Operations in Base Ten

Understand the place value system.

CCSS.MATH.CONTENT.5.NBT.A.4

Use place value understanding to round decimals to any place.

Mathematical Practices

CCSS.MATH.PRACTICE.MP8

Look for and express regularity in repeated reasoning.

References

Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards, revised 2017. <u>http://www.csteachers.org/standards</u>

National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). *Common Core State Standards.* National Governors Association Center for Best Practices, Council of Chief State School Officers.

NGSS Lead States. (2013). *Next Generation Science Standards: For states, by states.* National Academies Press.