Connections to Standards in PLTW Launch

PLTW curriculum is designed to empower students to thrive in an evolving world. As a part of the design process when developing and updating our curriculum, we focus on connections to a variety of standards. This PLTW Launch module connects to standards in the following:

- Next Generation Science Standards
- Computer Science Teachers Association K-12 Computer Science Standards
- International Society for Technology in Education Standards for Students
- Common Core State Standards English Language Arts - Fourth Grade
- Common Core State Standards Mathematics - Fourth Grade
Next Generation Science Standards

Energy

4-PS3-1
Use evidence to construct an explanation relating the speed of an object to the energy of that object.

4-PS3-2
Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

4-PS3-3
Ask questions and predict outcomes about the changes in energy that occur when objects collide.

4-PS3-4
Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Design

3-5-ETS1-1
Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2
Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-3
Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science and Engineering Practices: Asking Questions and Defining Problems
Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships.

• Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.

Science and Engineering Practices: Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

Science and Engineering Practices: Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

• Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Next Generation Science Standards

Science and Engineering Practices: Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

Science and Engineering Practices: Using Mathematics and Computational Thinking
Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.

Science and Engineering Practices: Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., measurements, observations, patterns) to construct or support an explanation or design a solution to a problem.
- Apply scientific ideas to solve design problems.

Science and Engineering Practices: Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

Science and Engineering Practices: Obtaining, Evaluating, and Communicating Information
Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

Disciplinary Core Ideas (3-5)
Physical Science
PS3.A Definitions of Energy
- The faster a given object is moving, the more energy it possesses.

PS3.A Definitions of Energy
- Energy can be moved from place to place by moving objects or through sound, light, or electrical currents.

PS3.B Conservation of Energy and Energy Transfer
- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.
Next Generation Science Standards

PS3.B Conservation of Energy and Energy Transfer

⦁ Light also transfers energy from place to place.

PS3.B Conservation of Energy and Energy Transfer

⦁ Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.

PS3.C Relationship Between Energy and Forces

⦁ When objects collide, contact forces transfer energy so as to change the objects’ motions.

PS3.D Energy in Chemical Processes and Everyday Life

⦁ The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use.

Engineering, Technology, and Applications of Science

ETS1.A Defining and Delimiting Engineering Problems

⦁ Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.

ETS1.B Developing Possible Solutions

⦁ Research on a problem should be carried out before beginning to design a solution.

ETS1.B Developing Possible Solutions

⦁ At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.

ETS1.B Developing Possible Solutions

⦁ Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

ETS1.C Optimizing the Design Solution

⦁ Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.

Crosscutting Concepts (3-5)

Cause and Effect: Mechanism and Prediction – Events have causes, sometimes simple, sometimes multifaceted. Deciphering causal relationships, and the mechanisms by which they are mediated, is a major activity of science and engineering.

⦁ Cause and effect relationships are routinely identified, tested, and used to explain change.

Systems and System Models – A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems.

⦁ A system can be described in terms of its components and their interactions.
Energy and Matter: Flows, Cycles, and Conservation – Tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.

- Energy can be transferred in various ways and between objects.

Connections to Engineering, Technology, and Applications of Science (3-5)
Influence of Science, Engineering, and Technology on Society and the Natural World

- Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.

Connections to the Nature of Science (3-5)
Science is a Human Endeavor

- Most scientists and engineers work in teams.

- Science affects everyday life.
Computer Science Teachers Association K-12 Computer Science

In Spring 2023 PLTW submitted all necessary documentation required by the Computer Science Teachers Association (CSTA) for a crosswalk review of our Launch and Gateway curricula by the CSTA Standards Review Team. While we anticipate approval and validation by CSTA, the review is pending.

Computing Systems

Troubleshooting

1B-CS-03

Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.

Networks and the Internet

Cybersecurity

1B-NI-05

Discuss real-world cybersecurity problems and how personal information can be protected.

Data and Analysis

Collection Visualization & Transformation

1B-DA-06

Organize and present collected data visually to highlight relationships and support a claim.

Inference & Models

1B-DA-07

Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.
Digital Citizen

2a
Students cultivate and manage their digital identity and reputation and are aware of the permanence of their actions in the digital world.

2b
Students engage in positive, safe, legal and ethical behavior when using technology, including social interactions online or when using networked devices.

2d
Students manage their personal data to maintain digital privacy and security and are aware of data-collection technology used to track their navigation online.

Knowledge Constructor

3a
Students plan and employ effective research strategies to locate information and other resources for their intellectual or creative pursuits.

3d
Students build knowledge by actively exploring real-world issues and problems, developing ideas and theories and pursuing answers and solutions.

Innovative Designer

4a
Students know and use a deliberate design process for generating ideas, testing theories, creating innovative artifacts or solving authentic problems.

4b
Students select and use digital tools to plan and manage a design process that considers design constraints and calculated risks.

4c
Students develop, test and refine prototypes as part of a cyclical design process.

4d
Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with open-ended problems.

Computational Thinker

5c
Students break problems into component parts, extract key information, and develop descriptive models to understand complex systems or facilitate problem-solving.
International Society for Technology in Education Standards for Students

Creative Communicator

6a
Students choose the appropriate platforms and tools for meeting the desired objectives of their creation or communication.

6b
Students create original works or responsibly repurpose or remix digital resources into new creations.

6c
Students communicate complex ideas clearly and effectively by creating or using a variety of digital objects such as visualizations, models or simulations.

6d
Students publish or present content that customizes the message and medium for their intended audiences.

Global Collaborator

7a
Students use digital tools to connect with learners from a variety of backgrounds and cultures, engaging with them in ways that broaden mutual understanding and learning.

7b
Students use collaborative technologies to work with others, including peers, experts or community members, to examine issues and problems from multiple viewpoints.

7c
Students contribute constructively to project teams, assuming various roles and responsibilities to work effectively toward a common goal.

7d
Students explore local and global issues and use collaborative technologies to work with others to investigate solutions.
Common Core State Standards English Language Arts - Fourth Grade

Reading Informational Text Standards

Key Ideas and Details

- CCSS.ELA-LITERACY.RI.4.1
 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text.

- CCSS.ELA-LITERACY.RI.4.2
 Determine the main idea of a text and explain how it is supported by key details; summarize the text.

- CCSS.ELA-LITERACY.RI.4.3
 Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text.

Craft and Structure

- CCSS.ELA-LITERACY.RI.4.4
 Determine the meaning of general academic and domain-specific words or phrases in a text relevant to a grade 4 topic or subject area.

Integration of Knowledge and Ideas

- CCSS.ELA-LITERACY.RI.4.7
 Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, timelines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears.

Writing Standards

Text Types and Purposes

- CCSS.ELA-LITERACY.W.4.2
 Write informative/explanatory texts to examine a topic and convey ideas and information clearly.

Research to Build and Present Knowledge

- CCSS.ELA-LITERACY.W.4.7
 Conduct short research projects that build knowledge through investigation of different aspects of a topic.

- CCSS.ELA-LITERACY.W.4.9
 Draw evidence from literary or informational texts to support analysis, reflection, and research.

Speaking and Listening Standards

Comprehension and Collaboration

- CCSS.ELA-LITERACY.SL.4.1
 Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 4 topics and texts, building on others’ ideas and expressing their own clearly.
Common Core State Standards English Language Arts - Fourth Grade

CCSS.ELA-LITERACY.SL.4.3
Identify the reasons and evidence a speaker provides to support particular points.

Presentation of Knowledge and Ideas

CCSS.ELA-LITERACY.SL.4.4
Report on a topic or text, tell a story, or recount an experience in an organized manner, using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace.

CCSS.ELA-LITERACY.SL.4.5
Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.
Mathematical Practices

CCSS.MATH.PRACTICE.MP1
Make sense of problems and persevere in solving them.

CCSS.MATH.PRACTICE.MP3
Construct viable arguments and critique the reasoning of others.

CCSS.MATH.PRACTICE.MP5
Use appropriate tools strategically.

CCSS.MATH.PRACTICE.MP6
Attend to precision.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.
Common Core State Standards Mathematics - Fourth Grade

Included in Optional Extensions

Number and Operations in Base Ten
Use place value understanding and properties of operations to perform multi-digit arithmetic.

- **CCSS.MATH.CONTENT.4.NBT.B.4**
 Fluently add and subtract multi-digit whole numbers using the standard algorithm.

- **CCSS.MATH.CONTENT.4.NBT.B.5**
 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangles.

- **CCSS.MATH.CONTENT.4.NBT.B.6**
 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain.

Number and Operations—Fractions
Extend understanding of fraction equivalence and ordering.

- **CCSS.MATH.CONTENT.4.NF.A.2**
 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer.

Measurement and Data
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

- **CCSS.MATH.CONTENT.4.MD.A.3**
 Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with.

Mathematical Practices

- **CCSS.MATH.PRACTICE.MP2**
 Reason abstractly and quantitatively.

- **CCSS.MATH.PRACTICE.MP4**
 Model with mathematics.
References

