Connections to Standards in PLTW Launch

PLTW curriculum is designed to empower students to thrive in an evolving world. As a part of the design process when developing and updating our curriculum, we focus on connections to a variety of standards. This PLTW Launch module connects to standards in the following:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Generation Science Standards</td>
<td>2</td>
</tr>
<tr>
<td>Computer Science Teachers Association K-12 Computer Science Standards</td>
<td>5</td>
</tr>
<tr>
<td>Common Core State Standards English Language Arts - Kindergarten</td>
<td>6</td>
</tr>
<tr>
<td>Common Core State Standards Mathematics - Kindergarten</td>
<td>7</td>
</tr>
</tbody>
</table>
Motion and Stability: Forces and Interactions

K-PS2-1
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

K-PS2-2
Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

Engineering Design

K-2-ETS1-1
Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

K-2-ETS1-2
Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

K-2-ETS1-3
Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Science and Engineering Practices: Asking Questions and Defining Problems
Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.

Science and Engineering Practices: Developing and Using Models
Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.

Science and Engineering Practices: Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

• With guidance, plan and conduct an investigation in collaboration with peers (for K).
Science and Engineering Practices: Analyzing and Interpreting Data
Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

- Analyze data from tests of an object or tool to determine if it works as intended.

Science and Engineering Practices: Using Mathematics and Computational Thinking
Mathematical and computational thinking in K–2 builds on prior experience and progresses to recognizing that mathematics can be used to describe the natural and designed world(s).

Science and Engineering Practices: Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

Science and Engineering Practices: Engaging in Argument from Evidence
Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).

Science and Engineering Practices: Obtaining, Evaluating, and Communicating Information
Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.

Disciplinary Core Ideas (K-2)
Physical Science

PS2.A Forces and Motion
- Pushes and pulls can have different strengths and directions.

PS2.A Forces and Motion
- Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it.

PS2.B Types of Interactions
- When objects touch or collide, they push on one another and can change motion.

PS3.C Relationship Between Energy and Forces
- A bigger push or pull makes things speed up or slow down more quickly.
ETS1.A Defining and Delimiting Engineering Problems

• Asking questions, making observations, and gathering information are helpful in thinking about problems.

ETS1.B Developing Possible Solutions

• Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.

ETS1.C Optimizing the Design Solution

• Because there is always more than one possible solution to a problem, it is useful to compare and test designs.

Crosscutting Concepts (K-2)

Cause and Effect: Mechanism and Prediction – Events have causes, sometimes simple, sometimes multifaceted. Deciphering causal relationships, and the mechanisms by which they are mediated, is a major activity of science and engineering.

• Simple tests can be designed to gather evidence to support or refute student ideas about causes.

Connections to Nature of Science (K-2)

Scientific Investigations Use a Variety of Methods

• Scientists use different ways to study the world.
In Spring 2023 PLTW submitted all necessary documentation required by the Computer Science Teachers Association (CSTA) for a crosswalk review of our Launch and Gateway curricula by the CSTA Standards Review Team. While we anticipate approval and validation by CSTA, the review is pending.

Impacts of Computing

Social Interactions

1A-IC-17

Work respectfully and responsibly with others online.

Safety Law & Ethics

1A-IC-18

Keep login information private, and log off of devices appropriately.
Language Arts Writing Standards

Text Types and Purposes

CCSS.ELA-LITERACY.W.K.2
Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.

Language Arts Speaking and Listening Standards

Comprehension and Collaboration

CCSS.ELA-LITERACY.SL.K.1
Participate in collaborative conversations with diverse partners about kindergarten topics and texts with peers and adults in small and larger groups.

CCSS.ELA-LITERACY.SL.K.1.a
Follow agreed-upon rules for discussions (e.g., listening to others and taking turns speaking about the topics and texts under discussion).

CCSS.ELA-LITERACY.SL.K.1.b
Continue a conversation through multiple exchanges.

CCSS.ELA-LITERACY.SL.K.2
Confirm understanding of a text read aloud or information presented orally or through other media by asking and answering questions about key details and requesting clarification if something is not understood.

CCSS.ELA-LITERACY.SL.K.3
Ask and answer questions in order to seek help, get information, or clarify something that is not understood.

Presentation of Knowledge and Ideas

CCSS.ELA-LITERACY.SL.K.4
Describe familiar people, places, things, and events and, with prompting and support, provide additional detail.

CCSS.ELA-LITERACY.SL.K.5
Add drawings or other visual displays to descriptions as desired to provide additional detail.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.
Counting and Cardinality
Know number names and the count sequence.

CCSS.MATH.CONTENT.K.CC.A.3
Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).

Measurement and Data
Describe and compare measurable attributes.

CCSS.MATH.CONTENT.K.MD.A.2
Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference.

CCSS.MATH.CONTENT.K.MD.B.3
Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.

Mathematical Practices

CCSS.MATH.PRACTICE.MP1
Make sense of problems and persevere in solving them.

CCSS.MATH.PRACTICE.MP3
Construct viable arguments and critique the reasoning of others.

CCSS.MATH.PRACTICE.MP5
Use appropriate tools strategically.
Counting and Cardinality
Know number names and the count sequence.

CCSS.MATH.CONTENT.K.CC.A.2
Count forward beginning from a given number within the known sequence (instead of having to begin at 1).

Count to tell the number of objects.

CCSS.MATH.CONTENT.K.CC.B.4
Understand the relationship between numbers and quantities; connect counting to cardinality.

CCSS.MATH.CONTENT.K.CC.B.5
Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.

Compare numbers.

CCSS.MATH.CONTENT.K.CC.C.6
Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.

Operations and Algebraic Thinking
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

CCSS.MATH.CONTENT.K.OA.A.1
Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.

CCSS.MATH.CONTENT.K.OA.A.2
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Mathematical Practices

CCSS.MATH.PRACTICE.MP2
Reason abstractly and quantitatively.

CCSS.MATH.PRACTICE.MP4
Model with mathematics.
Attend to precision.
References

