PLTW Launch Standards Connection

Weather: Factors and Hazards

Connections to Standards in PLTW Launch

PLTW curriculum is designed to empower students to thrive in an evolving world. As a part of the design process when developing and updating our curriculum, we focus on connections to a variety of standards. This PLTW Launch module connects to standards in the following:

Next Generation Science Standards	Page	2
Computer Science Teachers Association K-12 Computer Science Standards	Page	6
Common Core State Standards English Language Arts - Third Grade	Page	7
Common Core State Standards Mathematics - Third Grade	Page	8

Earth's Systems

3-ESS2-1

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

3-ESS2-2

Obtain and combine information to describe climates in different regions of the world.

Earth and Human Activity

3-ESS3-1

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

Engineering Design

3-5-ETS1-1

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science and Engineering Practices: Asking Questions and Defining Problems

Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships.

Science and Engineering Practices: Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

Science and Engineering Practices: Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

© 2023 Project Lead The Way, Inc. Weather: Factors and Hazards: Page 2 of 10

Science and Engineering Practices: Analyzing and Interpreting Data

Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

• Represent data in tables and/or various graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.

Science and Engineering Practices: Using Mathematics and Computational Thinking

Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.

Science and Engineering Practices: Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

Science and Engineering Practices: Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

• Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.

Science and Engineering Practices: Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

• Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.

Disciplinary Core Ideas (3-5)

Earth and Space Science

ESS2.D Weather and Climate

• Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.

ESS2.D Weather and Climate

• Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.

© 2023 Project Lead The Way, Inc. Weather: Factors and Hazards: Page 3 of 10

ESS3.B Natural Hazards

• A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts.

Engineering, Technology, and Applications of Science

ETS1.A Defining and Delimiting Engineering Problems

• Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.

ETS1.B Developing Possible Solutions

• Research on a problem should be carried out before beginning to design a solution.

ETS1.B Developing Possible Solutions

• At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.

ETS1.B Developing Possible Solutions

• Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

ETS1.B Developing Possible Solutions

• Testing a solution involves investigating how well it performs under a range of likely conditions.

ETS1.C Optimizing the Design Solution

• Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.

Crosscutting Concepts (3-5)

Patterns – Observed patterns in nature guide organization and classification and prompt questions about relationships and causes underlying them.

• Patterns of change can be used to make predictions.

Cause and Effect: Mechanism and Prediction – Events have causes, sometimes simple, sometimes multifaceted. Deciphering causal relationships, and the mechanisms by which they are mediated, is a major activity of science and engineering.

• Cause and effect relationships are routinely identified, tested, and used to explain change.

© 2023 Project Lead The Way, Inc. Weather: Factors and Hazards: Page 4 of 10

Connections to Engineering, Technology, and Applications of Science (3-5)

Influence of Science, Engineering, and Technology on Society and the Natural World

• Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.

Connections to the Nature of Science (3-5)

Science is a Human Endeavor

• Science affects everyday life.

Computer Science Teachers Association K-12 Computer Science

In Spring 2023 PLTW submitted all necessary documentation required by the Computer Science Teachers Association (CSTA) for a crosswalk review of our Launch and Gateway curricula by the CSTA Standards Review Team. While we anticipate approval and validation by CSTA, the review is pending.

Computing Systems

Troubleshooting

1B-CS-03

Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.

Networks and the Internet

Cybersecurity

1B-NI-05

Discuss real-world cybersecurity problems and how personal information can be protected.

Data and Analysis

Collection Visualization & Transformation

1B-DA-06

Organize and present collected data visually to highlight relationships and support a claim.

Inference & Models

1B-DA-07

Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.

Common Core State Standards English Language Arts - Third Grade

Reading Informational Text Standards

Key Ideas and Details

CCSS.ELA-LITERACY.RI.3.1

Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers.

CCSS.ELA-LITERACY.RI.3.2

Determine the main idea of a text; recount the key details and explain how they support the main idea.

CCSS.ELA-LITERACY.RI.3.3

Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect.

Craft and Structure

CCSS.ELA-LITERACY.RI.3.4

Determine the meaning of general academic and domain-specific words and phrases in a text relevant to a grade 3 topic or subject area.

Writing Standards

Research to Build and Present Knowledge

CCSS.ELA-LITERACY.W.3.7

Conduct short research projects that build knowledge about a topic.

CCSS.ELA-LITERACY.W.3.8

Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.

Speaking and Listening Standards

Comprehension and Collaboration

CCSS.ELA-LITERACY.SL.3.1

Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 3 topics and texts, building on others' ideas and expressing their own clearly.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

© 2023 Project Lead The Way, Inc. Weather: Factors and Hazards: Page 7 of 10

Common Core State Standards Mathematics - Third Grade

Measurement and Data

Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.

CCSS.MATH.CONTENT.3.MD.A.2

Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.

Mathematical Practices

CCSS.MATH.PRACTICE.MP1

Make sense of problems and persevere in solving them.

CCSS.MATH.PRACTICE.MP2

Reason abstractly and quantitatively.

CCSS.MATH.PRACTICE.MP3

Construct viable arguments and critique the reasoning of others.

CCSS.MATH.PRACTICE.MP5

Use appropriate tools strategically.

CCSS.MATH.PRACTICE.MP6

Attend to precision.

© Copyright 2010 National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

Common Core State Standards Mathematics - Third Grade

Included in Optional Extensions

Number and Operations—Fractions

Develop understanding of fractions as numbers.

CCSS.MATH.CONTENT.3.NF.A.1

Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.

CCSS.MATH.CONTENT.3.NF.A.3

Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

Measurement and Data

Represent and interpret data.

CCSS.MATH.CONTENT.3.MD.B.3

Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph i

Mathematical Practices

CCSS.MATH.PRACTICE.MP4

Model with mathematics.

CCSS.MATH.PRACTICE.MP7

Look for and make use of structure.

References

Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards, revised 2017. http://www.csteachers.org/standards

National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). *Common Core State Standards*. National Governors Association Center for Best Practices, Council of Chief State School Officers.

NGSS Lead States. (2013). *Next Generation Science Standards: For states, by states.* National Academies Press.